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Abstract

Solving temporal puzzles is the problem of recovering the
temporal order of a set of still images of a dynamic event,
possibly taken by multiple uncaliberated camera. Photo-
sequencing is an essential tool in analyzing (or visualizing)
a dynamic scene captured by still images. The research
paper that this project is based on, solves these temporal
puzzles by describing the problem as a low order auto re-
gressive model. The model can then be reduced to a mixed
integer linear programming problem and can be solved with
easily available solvers. The effectiveness and performance
is evaluated and show to be generally applicable.

1. Introduction

The problem in photo sequencing is the process of re-
covering a temporal order from a set of distinctly captured
images of a scene or event. These types of photo sequenc-
ing problems are frequently encountered in computer vision
problems.

A common example of this is group photography, where
a group of people are taking pictures of a live event, like
a concert or a sports match. Images from group photogra-
phy have been used commonly for analyzing the scene, for
example 3D reconstruction of landmarks. However when
these images have a temporal significance it can be useful
to arrange them in time order to extract context.

The temporal sequencing problem is easier to solve if
the 3D structure of the scene is known. In addition if the
camera matrices (internal and external) are known the prob-
lem can be further simplified. However such information is
not available for common group photography data-sets. The
camera view points can change across images if a subject is
being tracked, making the 3D structure extraction impossi-
ble. In addition people use a wide variety of cameras, and a
single event could captured by a multitude of different cam-
eras, making the problem of knowing camera matrix infea-
sible.

In the research paper that is used for this project, the au-

thors have developed an algorithm for temporal sequencing
that is widely applicable and makes few assumptions. The
approach of ’the simplest approach is usually the right one”
is applied, by assuming that for the dynamic model that is
used describe the temporal sequence, the simplest model
should be preferred. However if the time window is large,
simpler models would not able not give effective results.

One application of temporal sequences that the paper
discusses is for video encryption/decryption. The dataset
was compiled from videos downloaded from YouTube,
BBC Motion Gallery and datasets. The images in this
dataset are taken by a single but fast moving camera and
then they were shuffled, i.e. encrypted, in time. This dataset
is challenging since these images are mostly dynamic as a
whole, with few or no static objects in the field of view that
could be used as a reference.

2. Related Work

The problem of photo-sequencing was initially intro-
duced by Basha et al. [4]. The approach used by them is
based on sampling the 3D locations along the point tra-
jectory, at each of the time steps captured by the cam-
eras.These 3D locations along the trajectory are an indica-
tor of the temporal order of the images. They extract and
match sets of static and dynamic features between each of
the images and a reference image, without computing the
3D locations. Using the fundamental matrices computed by
the static features, the corresponding dynamic features are
projected onto the reference image. These projections can
be used to infer the 3D trajectory of the scene point, and
hence get the time ordering of images. Because of errors in
measurement the dynamics features might not necessarily
be consistent, so they use rank aggregation through Markov
chain approximation.

In their followup papers Basha ef al. [5] [6]] tackle the
space and time complexity of their algorithm. One of the re-
strictions with their earlier approach was that an image pair
must be detected automatically for their 2D geometric based
solution. In addition all feature points must appear and be
matched to features in the static pair. This complicates the



correspondence problem and limits the spatio-temporal ex-
tent of the event that can be captured. They address this
problem by adding a new requirement that each camera cap-
ture takes more than a single photo, which gives them the
temporal ordering across those pair of images. This simpli-
fies the rank aggregation problem.

Despite the improvements in results, the assumptions
made in those papers can be onerous. In contrast, in the
paper by Dicle et al. [2] the definition of temporal puz-
zles is more general and is not restricted to event scenes,
but it can also be applied to different video domains which
can have dynamic textures and without a background static
scene. In addition, their proposed approach does not require
prior knowledge of partial ordering of the data and it can be
applied to non-image sequences.

3. Technical Approach
3.1. LTI systems

A linear time-invariant system (or "LTI system”) is a sys-
tem that produces an output signal from any input signal
subject to the constraints of linearity and time-invariance;
Linear systems are systems whose outputs for a linear com-
bination of inputs are the same as a linear combination of in-
dividual responses to those inputs. Time-invariant systems
are systems where the output does not depend on when an
input was applied. These properties make LTI systems easy
to represent and understand graphically.

The transfer function of an LTI system is given by the
Laplace transform of the impulse response of the system
and it gives valuable information of the system’s behavior
and can greatly simplify the computation of the output re-
sponse. the output of an LTI system will be given by the
convolution of the signal with the impulse response. Since
the convolution in the time domain is equivalent to a multi-
plication in the Laplace domain
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The frequencies p; and z; which are the roots of the de-
nominator and numerator of the transfer function are called
the poles and zeros of the system, respectively. Poles and
zeros are either real, or they must appear in complex con-
jugate pairs. Finally, bounded-input, bounded-output stable
systems have all of their poles inside the unit circle.

3.2. Hankel matrices

A matrix whose entries along a parallel to the main anti-
diagonal are equal, for each parallel. Equivalently, H = h;;
is a Hankel matrix if and only if there exists a sequence
51,82,..., such that h;;=s;1;_1,1,j=1,2,.... If s, are square
matrices, then H is referred to as a block Hankel matrix.

Hankel matrices are frequently encountered in applications
where the close interplay between polynomial and matrix
computations is exploited in order to devise very effective
numerical solution algorithms. The general form of a Han-
kel matrix is below.
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Consider an nth order AR process: yr+1 =
Z:‘L:l a;yx—;- Given a set of N ordered noisy samples,
possibly with missing data and corrupted with outliers, it
is possible to estimate the underlying clean sequence {y};
by solving a structured rank minimization problem below
where p(y,d) is a data penalty term that depends on the
missing data support and the noise-model.

minimize rank{Hy}
y

subject to p(y.d) < Mmax

3.3. Atomic Norm

Let A be a collection of atoms that is a compact subset
of the set of real numbers. The elements of A are the ex-
treme points of conv(A). Let ||z|| 4 denote the gauge of A.

|Ix||l4a =inf{t >0 : 2 €t conv(A)}.

Note that the gauge is always a convex, extended-real
valued function for any set A. By convention this func-
tion evaluates to +oo if x does not lie in the affine hull of
conv(A). It can be assumed without loss of generality that
the centroid of conv(.A) is at the origin. With this assump-
tion the gauge function can be rewritten as

[|x||4 = inf {Z Ca ¢ X = Z cad, Cq > 0Vae A} .

acA acA

If A is centrally symmetric about the origin then we have
that ||.||a is a norm, which is called the atomic norm in-
duced by A.

For a convex penalty function given a set of atoms,
[1] propose a convex optimization method to recover
a “simple” model given limited linear measurements.
Suppose that x is formed from a set of atoms and
that we have a known linear map ¢ : R, — R,,
and we have linear information about x as follows:



y = dx*.

If the goal is to reconstruct x given y the following con-
vex formulation can be used to accomplish this task :
X = argn%(in [1x]|.4
sty = dx.
When A is the set of one-sparse atoms this problem reduces
to standard L1 norm minimization.

3.4. System Identification

The findings of [3] allow for identifying the system using
the atomic norm.

In many applications, the true model can be decomposed
as a linear combination of very simple building blocks.
For instance, sparse vectors can be written as short lin-
ear combinations of vectors from some discrete dictio-
nary and low-rank matrices can be written as a sum of a
few rank-one factors. Previously, Chandraskearan et al.
proposed a universal heuristic for constructing regulariz-
ers based on such prior information. If it is assumed that

T
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i=1

where A is an origin-symmetric set of “atoms” normal-
ized to have unit norm and r is relatively small, then
the appropriate penalty function is the gauge function (or
the Minkowski functional) induced by the atomic set A.

|Gl : = inf {t : (?Efconv(A)}inf{Zra : (-:'Zf'au}
acA acA

To apply these atomic norm techniques to system

identification, we must first determine the appropri-

ate set of atoms. For discrete time LTI systems

with small McMillan degree, we can always decompose

any finite dimensional, strictly proper system G(z) as:
&
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Hence, low order dynamical models can be estimated from
experimental data by solving a problem of the form of the
equation above to minimize the number of poles needed.

Minimizing the atomic norm in this equations above is an
infinite dimensional, convex problem. To circumvent this
obstacle, [3] proposed the Discretized Atomic Soft Thresh-
olding (DAST) algorithm that uses an e-net discretization
of the unit disk in the complex plane, hence approximating
the infinite dimensional set of first order stable LTI systems
(atoms) by a finite one.

3.5. Algorithm

The  algorithm to  solve  the
defined by the set of equations

puzzle is
below

minimize. |||,
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here ’c’ is the set of coefficients form the LTI transfer
equation function. D, is a dictionary created from the
impulse response of atoms in the system. P is a permutation
picked from the set of all possible permutations, and ~u” is
random shuffle order of the images. The goal would be to
find P that can re-arrange the shuffled order back into the
original order.

One constraint that is applied on the shuffling is that the
first frame is kept in place, so we can add an extra constraint
to the solver that the first frame in u” should come before
every other frame once P is applied. The overall algorithm
is described below

Algorithm 1 Algorithm for temporal puzzles

1: Input: S dynamic sequence, D, atoms dictionary, Q
partial orderings, D number of principal components,
Qutput: Permutation o

Project S on D principal comp., ug < PCAp 4(S)
Convert Q to permutation constraints, P;T1 < PjTl
Solve equation (15) with derivative vy = D,cy

U 4

For the pole atoms in Da, the authors of [2] observed that
the ring defined by 0.98 < |p| < 1.02, where p belongs to
the unit circle, with a discretization of € = 0.05 performs the
best, so those same values are used with Dictionary size of
200 columns.

4. Experiments

A variety of image sequences were used for analyzing
the algorithm. The accuracy of the results were measured
using Kendall distance. The Kendall tau distance is a metric
that counts the number of pairwise disagreements between
two lists. The larger the distance, the more dissimilar the
two lists are. Kendall tau distance is also called bubble-sort
distance since it is equivalent to the number of swaps that
the bubble sort algorithm would make to place one list in
the same order as the other list.

For each of scenes run, the program is run for 10 itera-
tions and average Kendall distance is reported. A summary
of the Kendall distance for all the scenes are in the chart
below.

The algorithm does very well for most scenes, as can
be seen from the Kendall distance, even when the back-
ground is continuously changing between frames (bird-
house scene). However when the subject is stationary for
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SCENE : BIRDHOUSE
KENDALL DISTANCE : 0.00

SCENE : CHEETAH
KENDALL DISTANCE : 0.00

SCENE : HIGHIUMP
KENDALL DISTANCE : 0.00

SCENE : MARPLE17
KENDALL DISTANCE : 0.02381

Figure 1. Data-set results

multiple frames, it is hard for the algorithm to find the cor-
rect ordering (monkey5 scene).

Kendall Distance for all scenes

In terms of performance there is an exponential in-
crease in run time when we cross 22 frames as input.
SO the algorithm only looks to be well suited for smaller
data set, in terms of frame count and time window. A
chart of the algorithm performance can be seen below.

Runtime by frame count

5. Conclusions

The [2] paper introduced a novel approach to solve tem-
poral puzzles by use of the atomic norm framework. By
applying the findings of [1]] they were able to express an
intractable mixed SDP problem in a mixed linear integer
problem that can be solved using off the shelf constraint
solvers.

As seen from the experiment results in the previous
sections, there are scenes where the algorithm does very
well, despite some scenes having a constantly varying back-
ground, or without a clear definition of a movement pat-
tern (something that the previous approaches to this prob-
lem were not able to handle). At the same time there are
scenes where the algorithm struggles. This can be seen in
scenes that have repetitive motion, or where the subject is
stationary for multiple frames. But these are hard cases, and
other existing algorithms don’t have a good way of handling
them either.

In terms of performance, the algorithm is able to han-
dle less than 10-15 fairly easily. But once the number of
frames crosses 25, there is an exponential increase in run
time, making the algorithm impractical. For large frame
count the input will likely need to be batched. Also as
the time window grows, the simplicity assumption does not
hold, leading to wrong solutions.
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